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Abstract

We present a general method for evaluating the maximum transmitted spin polarization and
optimal spin axis for an arbitrary spin—orbit coupling (SOC) barrier system, in which the spins
lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of
electrons. Besides momentum filtering, another prerequisite for finite spin polarization is
asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian.
This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We
apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus
SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In
particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield
several advantageous features for spin filter and spin injector functions, such as increased

robustness to wavevector spread of electrons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The production of spin-polarized current in semiconductors
(SC) is an important but challenging step in the field of
spintronics, in which electron transport is controlled based on
the spin degree of freedom [1-3]. The long spin relaxation
time observed in semiconductors [4—7], and the compatibility
of this technology with current nanofabrication methods [§]
makes semiconductor-based spintronics both an attractive and
a viable avenue for future applications. Several techniques for
creating spin current in semiconductors have been proposed
such as direct injection of current from ferromagnetic (FM)
metals. However, the large mismatch of conductivities of
the two materials [9], and the depolarizing effects due to
defects at the FM-SC interface [10] drastically reduce the
efficiency of this process. A possible method of overcoming
the conductivity mismatch is by utilizing diluted magnetic
semiconductors (DMS) as spin injectors instead of FM
metals. However, this faces the separate problem of low
Curie temperature, which characterizes currently known DMS
materials.

An alternative is to utilize spin—orbit coupling (SOC),
an effect described by Dirac’s equation in the non-
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relativistic limit, to directly induce spin-polarized current
Essentially, electrons traveling with
momentum £ in the presence of an electric field E feel an
effective magnetic field along k x E which spontaneously
breaks the spin degeneracy into two subbands.

in semiconductors.

Previous
works [11, 12] have theoretically demonstrated ways to
preferentially filter one subband over the other, using
techniques such as resonant tunneling with multiple barriers.
However, because of the time-reversal (TR) invariance of SOC,
these schemes still result in zero net spin polarization. In
this paper, we propose to induce a finite spin polarization in
a TR symmetric system via filtering of electrons in momentum
or k-space. In particular, we theoretically analyze the spin
polarization for arbitrary azimuthal anisotropies in k-space,
and determine the reference axis along which the polarization
is maximal. We first present the general derivation for these
two quantities, that is valid for arbitrary spin—orbit systems
with in-plane spins. Subsequently, we apply the results
to three common SOC systems: (a) bulk k3-Dresselhaus
SOC, (b) combined linear-k Dresselhaus and Rashba SOC
in two-dimensional heterostructures, and (c) strain-induced
SOC.

© 2008 IOP Publishing Ltd  Printed in the UK
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2. Theory

We begin by considering the general spin—orbit Hamiltonian,
obtained in the non-relativistic limit of the Dirac equation,

2

Hso = — G-k xVV)=—r5-Qk), (1

4m2c?
where 2 is the coupling parameter, o is the vector of
Pauli matrices, and Q(k) is a momentum-dependent effective
magnetic field. The SOC spontaneously breaks the spin
degeneracy into two subbands (%), separated by a spin split
in energy of 2A|§2(lz)|. We denote the spin-split eigenstates
(subbands) by spinors §+ and 5,. The two eigenstates consist
of an ensemble of degenerate electron modes k, whose spins
he elther parallel (+) or antiparallel (—) to the effectlve ﬁeld
Q(k) Due to TR symmetry, the effective field satisfies Q(k)
—Q( k) within each band. Thus, if transport occurs across the
entire Fermi surface, the net spin polarization of current in a
SOC system must necessarily vanish. In order to induce a finite
spin polarization, one must explicitly break the TR symmetry
e.g. by introducing an external magnetic field, or incorporating
magnetic moments. Alternatively, one may measure a finite
spin polarization by selecting and analyzing electrons with
certain momenta.

We consider a selective filtering of electrons in the
azimuthal k-space, i.e. in kj = (ky, k,). To quantify the spin
polarization in the system, we first consider a reference spin
axis y, and compute the transmitted spin conductance along
this axis, i.e. the conductance of electrons with spins polarized
along y. Our objective is to determine the optimum axis, Yop,
along which the spin conductance is a maximum for a given
filtering scheme. The transmitted spin conductance is defined
as the product of the electron spin S along y, and the particle
conductance, g.. Following the density matrix formalism [13],
the expectation value of the transmitted spin conductance for
arbitrary azimuthal y is

(ngy) = Tr()ogzsy)s 2)

where g, is the particle conductance per transmitted mode,
and §, is the spin projection operator along y, S, =
Sccosy + Sysiny [14]. We assume a maximum particle
conductance of g, = e¢/h (NB the maximum ballistic charge
conductance is e?/h per mode). Note that equation (2) is
effectively a measure of the spin polarization along y. The
density matrix p in equation (2) describes the mixed state
of eigenstates in the system [13-15], and is given by p =
PylE)EL] + P_|E_)(E_|, where P.(P_) is the probability
of an electron being in eigenstate +(—). Since the intrinsic
angular momentum associated with an electron spin is 7 /2, the
maximum spin conductance per transmission mode is given
by g.S = (e/h)(h/2) = e/4m. Until now, the analysis has
been completely general. For illustrative purposes, we focus
now on SOC systems whose spins are in-plane (i.e. the SO
Hamiltonian contains only the o, and o, Pauli matrices), as
many common SOC systems are of this type. For these SOC
systems, the eigenspinors have the general form of

£y = (xer® 1T/, 3)

where x (E) is a momentum-dependent phase factor, and the &
indexes the two spin-split subbands. Expanding equation (2),
one then obtains

(g.5,) = 4i(P+ — P_)cos (v + x(¢)). @)
JT

where ¢ = arctan(k,/k,). (P — P_) = n is the
subband filtering efficiency, which measures the efficiency of
preferentially selecting one eigenstate (subband) over the other,
and its value depends on the particular method used to filter
the spin eigenstates. There are a number of ways of achieving
this, which we shall discuss later. To obtain the total spin
conductance due to all modes, equation (4) must be integrated
in k-space over the contributing portion of the Fermi surface. If
there are no constraints in k-space, then the integration covers
all modes on the Fermi surface (i.e. ¢ goes from 0 to 2m),
which yields zero spin conductance for any y, regardless of
whether n # 0. In order to achieve a finite polarization,
we limit the k-space distribution of electrons to part of the
Fermi surface. For simplicity, we consider a filtering scheme
such that transmission is allowed only for electron modes with
wavevectors k” (ky, ky) pointing in some range of azimuthal
angle ¢ € (¢, ¢2). Under this scheme, the spin polarization
along a given y is averaged over the collected modes:

1 2]
P, = " /‘p] 1n(¢p) cos (y + x(¢)) do, ®)

where A¢p = ¢, — ¢;. When P4 and hence 7 is independent
of ¢ (as is the case for the systems studied in the next section),
we find that for a collection range of ¢ € (¢1, ¢»), the optimal
spin axis which yields maximum spin polarization P, is given
by

*sin x (¢) d¢
M) (6)

5. cos x(¢) dp

Since k-space filtering is a prerequisite for achieving finite
spin polarization in an SOC system, we will briefly discuss
how it may be achieved in practice. A possible method is
to implement a collector that preferentially collects electrons
with a certain wavevector distribution. For example, following
Koga et al [12] and Ting et al [16], one can preferentially
select electrons with k, > 0 by placing a collector along the
positive x-direction (with respect to the center coordinate of
the sample). Strictly, such a one-sided collector will break
the translational symmetry in the x-direction, so that k can
no longer be regarded as a good quantum number. However,
following [12, 16], we assume that the collector is sufficiently
decoupled from the central SOC region, so that k| is still well
defined within the SOC region. Suppose we have a sample with
longitudinal dimension (of say L, along z) of the order of the
mean free path, so that the electron transport is ballistic. An
electron injected from one end of the sample with transverse
momenta k| = (ky, k,), would therefore leave the sample with

Yopt = — arctan (

the same k. For an electron with k, > 0, we therefore require
that the transverse shift along x of the electron be at least L, /2,
where L, is the length of the sample along the X-direction,
i.e. we require

X

ol > — 7
vxt > — @)
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Figure 1. The spin-dependent tunneling process, where the barrier
exhibits bulk-inversion asymmetry. Under Dresselhaus spin—orbit
coupling, electrons are transmitted into region III with different
probabilities P., P_ depending on their spin state.

where v, = fik, /m™ is the electron’s x-velocity and t = L/vg
is the time of transport of the electron through the sample (vp
is the Fermi velocity). In an alternative scheme, one could
induce an asymmetry in the transverse electron momentum
distribution by applying a small electric field in the transverse
direction [17].

In the following section, we will apply the above general
analysis to several specific SOC systems.

3. Applications—results and discussion

3.1. Spin-dependent tunneling through semiconductors with
bulk-inversion asymmetry

We first consider the spin polarization of the tunneling
electrons across a semiconductor (SC) barrier with a bulk-
inversion asymmetry (BIA) in its crystal lattice. Such a crystal
structure (e.g. zincblende structure) exhibits k3-Dresselhaus
SOC. We assume the barrier has width a along the z-direction,
which corresponds to the crystal [001] axis. The barrier
potential profile is represented by a square hat function U (z) =
Up[®(z) — ©(z — a)], as shown in figure 1. In the presence
of Dresselhaus SOC, the Hamiltonian which describes electron
transport in the SC barrier is [11]
P’ )

H= % - IB(k)7G)7 - kxax)vz + U(Z), (8)
where p is the electron momentum, m* is the effective mass
of electrons, B is the Dresselhaus parameter (in eV m3), and
o; are the Pauli spin matrices. The eigenspinor solutions to
equation (8) are

. 1/ sbatiky) 1 (—sexp(i¢)
aaﬁ( " >:ﬁ< ! ) v

where s = =1 correspond to the two spin eigenstates,
1 . .

and ky = (k2 + ki)i is the in-plane wavevector

magnitude. Each eigenstate consists of an ensemble of

electrons whose spins are oriented in the xy-plane, as
illustrated in figure 2. The solutions to the Schrodinger
equation HW4i(x,y,z) = E+WVi(x,y,z) are of the form

() (b)

Figure 2. Spin orientations in the xy-plane, along the Fermi circle
for electrons in (a) ‘+’ eigenstate, and (b) ‘—’ eigenstate under
spin—orbit coupling induced by bulk-inversion asymmetry (BIA).

W (x,y.2) = Exvu(2) exp (ikox + ik, y) where ¥u.(2) are
the traveling wave components. In particular, the traveling
component in region III (see figure 1) is

I

T (2) =ty exp (ik;2), (10

where ¢4 are the transmission coefficients. These are obtained
by performing wavefunction and flux matching at the region
boundaries:

B —2K 1 Krk.q+
i (g2K3 + k2K?)sin (qra) — 2K Kok.qu cos (ga)’
(11)
where K| = h*/2my, Ko = h*/2m, + Bk and g (k;) is the
wavevector inside (outside) of the barrier, given by

(2,;22 (Er — Up) — kﬁ)
9+ = 2m ’
1+ =32 Bk

2m1 2

In the above, EF is the Fermi energy, and m, m, are the
effective masses outside (RI and RIII), and within (RII) the
SC barrier, respectively. The transmitted spin conductance is
obtained by applying equation (4) and substituting

Iy

o=

12)

I—

|rs]?

= = 13
2 + e |? (13

+
which denote the probabilities of + eigenstate occupation
in RIII. Since P, are independent of ¢, we can evaluate

the optimum spin axis using equation (6). This yields a
surprisingly simple result of

1+ ¢ + 21
Vopt = —%, (14)

for the optimal spin axis, along which the spin polarization is
maximized,

5)

P = L sin (%"5) = nf(A).
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Equation (15) shows that the net spin polarization is given by
the subband filtering efficiency 7 scaled by the factor f(A¢),
which describes the effect of averaging over modes A¢ on the
spin polarization. Since f(A¢) is a monotonically decreasing
function over the range 0 < A¢ < 27, averaging over a wider
angular spread of transmission modes will inevitably result in a
lower spin polarization. We performed numerical calculations
for barriers made of semiconductor materials which exhibit
BIA, e.g. GaAs, GaSb and InSb. We assumed the following
parameters for (GaAs, GaSb and InSb) [11, 18]: m*/my =
(0.067, 0.041, and 0.013), and B = (24, 187, and 220) eV A’
We also set Ep = 20 meV corresponding to typical carrier
densities of 10'°~10"7 em ™ [19], ki = 2.5 x 10®* m~!, and
assumed a barrier of height Uy = 70 meV and width 2.7 nm.
The chosen width allows us to achieve an appreciable spin
polarization and tunneling current magnitude. In figure 3 we
plot the maximum spin polarization for the different barrier
materials with increasing collection span A¢ = ¢, (with ¢; =
0 fixed). Clearly, the highest spin polarization corresponds
to collection of only a single transmission mode for each
eigenspinor (i.e. A¢p — 0). Any angular spread A¢ in the
collection process, which inevitably occurs in practice (e.g. due
to the inherent spread in the incident electrons, or kj-mixing
type of scattering events within the SOC region), will cause a
reduction in the spin polarization. As noted previously the spin
polarization ultimately vanishes when A¢ = 2m. In figure 3
we also plot the optimal orientation of the reference spin axis
Yopt Of the detector in region III. The variation of Yo, with A¢
means that it is necessary to have a collector with a tunable
spin or magnetization axis in order to harness the maximum
spin polarization of the transmitted current. Note that the spin
polarization achievable in this tunneling scheme is only of
the order of 1%. This is because the maximum polarization
is constrained by the subband selectivity ratio n, which is
relatively low in the present tunneling scheme. To achieve
a higher spin polarization, we require a system with a much
higher subband filtering efficiency. One such system is a multi-
barrier structure with SOC effect, which exhibits resonant spin-
dependent tunneling, as discussed in the following section.

3.2. Spin polarization in heterostructures induced via
resonant tunneling

Recently, there has been a wealth of theoretical study
on resonant tunneling structures which utilize the SOC in
heterostructures to achieve an extremely high (near perfect)
subband filtering performance [12, 20]. In such two-
dimensional heterostructures, the dominant intrinsic SOC
mechanisms are the Rashba and linear-k Dresselhaus types,
described by the Hamiltonian

7
2m*

H= + a(ocky —oyky) + Blocky — oyk,y), (16)
where «, B are the Rashba and Dresselhaus coupling strengths,
respectively.

In the multi-barrier resonant tunneling structures, the SOC
effects can induce a clear spin splitting of the transmission

resonances, which results in a high subband selectivity. In [12],

15 . -
GaS 13
i ~ ---- GaAs ]
121 .‘\.\ — - -InSb 125
[ Copt. ;_"
5 1, &
Loof 12 §
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0 1 2 3 4 5 6
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Figure 3. Maximum spin polarization for electrons tunneling
through a bulk k*-Dresselhaus barrier, under k-space filtering, such
that only electrons traveling in the azimuthal direction

¢ = arctank, /k, € (0, A¢) are collected. A broader momentum
collection distribution (i.e. larger A¢) leads to a reduced spin
polarization, which ultimately vanishes when the entire Fermi circle
is collected. Superimposed is the corresponding (azimuthal) net spin
polarization direction.

Koga et al proposed a non-magnetic, triple-barrier resonant
tunneling diode (TB-RTD), where spin splitting between the
resonant tunneling modes is induced under the influence of the
Rashba SOC effect. With a sufficiently large spin splitting
between the subband modes and by tuning the emitter—
collector bias, transmission can be made to selectively occur in
one of the subbands while being suppressed in the other. In this
structure, the subband transmission probabilities are defined as

L 41
where [ is the transmitted tunneling current of the &+ subbands

through the TB-RTD, which are given by the following integral
up to the Fermi level [12, 16]:

P. a7

I = %//Ti(E,%,,)dEdIQ”. (18)

Under optimal conditions, an extremely high subband filtering
efficiency of n = 99.9% is predicted. In [12] only the Rashba
SOC interaction was considered, in which case the eigenvalues,
Ei = h*k*/2m* £ ak, are isotropic in the azimuthal plane
in k-space. Since the transmission probabilities 7+ and hence
Py are then ¢-independent, this case is similar to the bulk
Dresselhaus system considered in the previous section, except
for the much larger value of 5. Thus, the optimal spin
polarization axis is a linear function of ¢, (with ¢; = 0), and
the spin polarization has the same dependence on the collection
span f(A¢), as in equation (15).

Of greater interest is the case where both Rashba and
linear Dresselhaus SOC effects are present in the system.
The corresponding eigenvalues are Ei = Hh%k> [2m* £
Va2 + B2 + 2aB sin (2¢)k;, while the eigenspinors & are
given by equation (3) with

19)

() = arctan (M) _

asing + B cos¢
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Polarization direction (rad.)
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Figure 4. Net (azimuthal) spin polarization direction as a function of
collection span, in the presence of combined Dresselhaus and Rashba
SOC effects. The electrons are subject to k-space filtering, such that
only those traveling in the azimuthal direction ¢ = arctank, /k,

€ (0, A¢) are collected. For the Rashba-only (8 = 0) and
Dresselhaus-only (o = 0) cases, the spin polarization has a linear
dependence on the collection span A¢. The dependence becomes
increasingly non-linear as the spin—orbit parameter ratio 8/«
approaches unity.

Since E4 and éi are anisotropic in the azimuthal plane, the
transmission probabilities 7+ and hence the subband currents
1. are now ¢-dependent. However, we can simplify the
transport analysis by assuming (following [16]) that /. are ¢-
independent even when 8 # 0. This isotropic approximation
can be justified as follows [16]: [. are determined by
integrating the transmission probabilities 7y up to the Fermi
energy Ep based on equation (18). Numerically it was found
that the resonance peak strengths of 7. are not strongly
dependent on ¢. Additionally, for typical values of Ef, the
main peaks of T+ (E) usually lie below Ef for all ¢. Under
these conditions, the integrated quantity /- will have a much
weaker ¢-dependence. With the isotropic approximation in
hand, we apply equation (6) to determine the optimal spin
reference axis y,p. The variation of Y,y with the collection
span A¢ (shown in figure 4) arises from the ¢-dependence of
the eigenspinors §i. The corresponding polarization Py—y,
normalized to n = (P; — P_), is plotted in figure 5. Note
that we have plotted the dependence of yop and P, on A¢
for different ratios of Rashba to Dresselhaus SOC parameters,
B/a, because the shape of the curves depends only on this ratio.

In the presence of Dresselhaus SOC only, i.e. « = 0,
we recover the linear variation of Y, which is similar to the
k3-Dresselhaus SOC case studied in the previous section. At
the other extreme, i.e. B = 0 (Rashba-only) case, yop also
shows a linear variation but with a gradient of opposite sign.
This is because the effective field directions due to Rashba and
Dresselhaus SOC effects are perpendicular to one another, as
can be seen from equation (16). As for the A¢-dependence
of the polarization P,, both cases show identical behavior,
i.e. monotonic decrease with collection span according to
equation (15).

The more interesting case of mixed Dresselhaus and
Rasbha SOC, i.e. for finite S/a values, show several

s ]
- — B=283a

08

Polarization ¢P+-P-)

Collection span, A® (rad.)

Figure 5. (a) Maximum spin polarization normalized to the subband
filtering efficiency 7 as a function of collection span, of combined
Dresselhaus and Rashba SOC effects. The electrons are subject to
k-space filtering, such that only those traveling in the azimuthal
direction ¢ = arctank,/k, € (0, A¢) are collected. For the
Rashba-only and Dresselhaus-only cases, the spin polarization
behavior is identical to the k3-Dresselhaus case in bulk (see figure 3).
In contrast, for 8/« tending to unity, the polarization behavior shows
distinctive features such as a plateau of high spin polarization at
small A¢, and non-monotonic behavior at large A¢ values. (b) The
azimuthal spin orientation of electron modes in the + subband of the
combined Rashba—Dresselhaus system, when o = . The shape of
the polarization curve in (a) can be explained qualitatively when one
considers the distributions of spins in k-space.

qualitatively different behaviors in y,p and P,. We highlight
three distinctive features with potential practical utility: (a) Yop
exhibits a non-linear variation as a function of A¢, as shown
in figure 4. This is especially obvious if the two coupling
constants are comparable, i.e. as f/a¢ — 1. In fact, when
B/a = 1, Yop becomes relatively constant for a large range of
A¢. This is advantageous from a practical standpoint since the
reference axis of the collector can be fixed at e.g. Yope = 37 /4,
regardless of the k-filtering scheme. (b) Another interesting
feature is that when the collection span is set at the critical
value of A¢g = m/2 or equivalently at 37 /2, the optimal
spin axis remains constant regardless of the relative values
of @ and B. This characteristic will be useful in a tunable
spin filter device, in which the Rashba constant « can be
changed relative to the Dresselhaus constant 8 by applying a
gate bias which modifies the band structure at the interface
of the heterostructure [12, 21]. If the k-filtering scheme is
such that A¢p = Adgo, then the gate-bias-induced change of
B/« ratio will only modify the filtering efficiency of the device
(i.e. P,), without affecting the orientation of the collected spin
current. (c) Thirdly, we find that as 8/« approaches unity,
the normalized spin polarization PP, becomes insensitive to an
initial broadening of the wavevector collection spread A¢. As
shown in figure 5, for 8/a = 1, P, is maintained almost at its
maximum value of 1 for a sizable range of collection span of
0 < A¢p < 3m/4 ~ 2.35 rad before decreasing. Thus, one
can potentially improve the robustness of the proposed spin
filter/injector device to an angular spread of the wavevector
of the incident electrons and kj-mixing due to scattering, by
designing the heterostructure or tuning the gate bias, so that
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the Rashba and Dresselhaus SOC effects are of equal strength.
This property also enables us to relax the strict requirement
for 1D channel transport that is usually associated with devices
based on SOC effects [22].

Finally, we note that when /a0 — 1, the monotonically
decreasing trend of the polarization curve no longer holds.
As shown in figure 5, there is a small peak in the spin
polarization curve, which is due to the particular symmetry of
the eigenspinors for the « = B case (see inset (b) of figure 5).
Unlike in the previous case with purely k*-Dresselhaus SOC
within the barrier, where a spread of electron momenta always
reduces the transmitted spin polarization, we find that in the
present system, the interplay between Rashba and Dresselhaus
SOC can be utilized to counteract this averaging effect.

3.3. Strain-induced spin—orbit coupling

We end with a brief discussion of spin transport in strain-
induced SOC systems. In general, the effective magnetic
SO field Q(k) in equation (1) is permitted when there are
broken inversion symmetries in the system. An example is the
strain-induced asymmetry in bulk semiconductors. The most
dominant form of such strain-induced SOC mechanism has the
form [23, 24]

H = Dlky(€yy — €;)0x +ky(€; — €xx)0y
+ kz (exx - ny)O'z], (20)

where D is a material-dependent parameter and ¢;; are
elements of the strain tensor. If we consider a heterostructure
with uniaxial strain characterized by €,, = €,, [24], then
equation (20) becomes

‘H = —De(kco, — kyoy), 21
where € = €,, — €. Equation (21) has the same form
as the Hamiltonian in equation (16) with the effective SOC
constants of « = 0 and B = —De. Therefore, with these
substitutions, the analysis of transmitted spin polarization in
uniaxially strained SC follows in an identical fashion to that of
the Rashba—Dresselhaus system presented earlier, but with the
spin polarization direction rotated by .

4. Conclusion

In conclusion, we have presented a general method for
determining the optimal spin axis and maximum spin
polarization, applicable to spin—orbit systems with in-plane
spins and where time-reversal symmetry is broken by k-space
filtering of the incident electrons. Another prerequisite for
spin polarization is asymmetric transmission probabilities of
the two subbands corresponding to the spin eigenstates of
the SO Hamiltonian. This can be achieved best via resonant
tunneling transport through multiple barriers. The general

analysis is applied to several specific SOC systems: pure bulk
Dresselhaus SOC, 2D heterostructure with mixed Dresselhaus
and Rashba SOC effects and strain-induced SOC. We find that
the interplay between Dresselhaus and Rashba SOC effects can
yield several advantageous features for spin filter functions,
such as increased robustness to wavevector spread of incident
electrons.
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